top of page

Challenges connected with monitoring of smart specializations in less developed regions of the EU

Elżbieta Wojnicka-Sycz

University of Gdansk, Poland

ul. Jana Bażyńskiego 8, 80-309 Gdańsk

Gdańsk University of Technology, Poland

ul. Gabriela Narutowicza 11/12, 80-233 Gdańsk, e-mail:

ORCID: 0000-0002-0016-5580

Piotr Sliż

University of Gdansk, Poland

ul. Jana Bażyńskiego 8, 80-309 Gdańsk


ORCID: 0000-0001-6776-3369

Piotr Sycz

University of Gdansk, Poland

ul. Jana Bażyńskiego 8, 80-309 Gdańsk


ORCID: 0000-0002-9614-5065

received:  30.11.2020
corrected:  09.12.2020
accepted: 15.12.2020
smart specialization, innovation, Pomeranian.


The article presents the problems and challenges in the area of monitoring of smart specializations considered as priority areas of Regional Innovation Strategies for Smart Specializations (RIS3) based on the example of the Pomeranian Region of Poland. In the article general assumptions of designing a monitoring system as well as international recommendations and examples are presented with conclusions about the problems that are faced by less developed regions with fewer resources and traditions in gathering specialized data for monitoring of priority areas. The process of designing and caring on monitoring of smart specializations in Pomeranian region is presented with the an analysis of available data sources for monitoring indicators, their weaknesses and strengths.

Moreover, the authors’ proposition of a  monitoring system of priority areas of smart specializations in the Pomeranian region is presented based on the logic of indicators related to the resources, symptoms and effects of smart specializations.

The proposition also embraces additional sources of data other than the most widely used data from statistical offices, that is data from the Patent office, data bases of scientific publications, data on projects connected with basic research and others.

The applied research methods include analysis of literature, source materials and documents, as well as statistical data and other data (data on R&D projects, intellectual property rights protection, scientific publications, new business entities), which can be used for the monitoring system in terms of their strengths and weaknesses from the perspective of using smart specializations in less-developed regions of the EU in monitoring, based on the example of the Pomeranian Region


  1. Bal-Domańska, B. (2016). The identification of relations between smart specialization and sensitivity to crisis in the European Union regions. In: A. F. X. Wilhelm & H. A. Kestler (Eds.), Analysis of Large and Complex Data (pp. 287-297). Springer.

  2. European Commission (2010). Investing in Europe’s future: Fifth report on economic, social and territorial cohesion. Publications Office of the European Union.

  3. Delloite. (2015). Wskaźniki obrazujące poziom rozwoju Inteligentnych Specjalizacji Pomorza. Opracowanie dla Urzędu Marszałkowskiego Województwa Pomorskiego – materiał wewnętrzny. Warszawa.

  4. European Commission. (2014). Guidance document on monitoring and evaluation. Retrieved from sources/docoffic/2014/working/wd_2014_en.pdf

  5. European Commission. (2018a). Smart specialization platform. Retrieved from

  6. European Commission. (2018b). Regional innovation scoreboard. Retrieved from facts-figures/regional_en

  7. Gulc, A. (2015). Analysis of methodological approach to identify smart specialization on the example of Polish regions. Procedia-Social and Behavioral Sciences, 213, 817-823.

  8. Kamrowska-Zaluska, D. & Soltys, J. (2016). Process of emergence of smart specialisation in Pomeranian Voivodeship in Poland. Procedia Engineering, 161, 1987-1995.

  9. Kleibrink, A., Gianelle, C., & Doussineau, M. (2016). Monitoring innovation and territorial development in Europe: emergent strategic management. European Planning Studies, 24(8), 1438-1458.

  10. McCann, P. & Ortega-Argilés, R. (2016). Smart specialisation, entrepreneurship and SMEs: Issues and challenges for a  results-oriented EU regional policy. Small Business Economics, 46(4), 537- 552.

  11. Markowska, M., Kusterka-Jefmańska, M., & Jefmański, B. (2016). Analysis of smart specialization in European regions using fuzzy classification. Argumenta Oeconomica, 37(2), 31-65. DOI:10.15611/ aoe.2016.2.02

  12. Monteiro, R., Santos, P., Guimarães, C., & Silva, A. (2018), Norte Region smart specialisation strategy (NORTE RIS3). A monitoring system methodological approach for MONITORIS3 project Retrieved from

  13. Pander, W., Rauzer, A., Stawicki, M., Sycz, P., & Wojnicka-Sycz, E. (2014). Wyznaczanie, monitoring i ewaluacja inteligentnych specjalizacji. Warszawa.

  14. Plenikowska-Ślusarz, T. & Jurkiewicz, T. (2017). Ocena modelu monitorowania inteligentnych specjalizacji Pomorza. Gdańsk: Centrum Analiz i Ekspertyz Uniwersytetu Gdańskiego.

  15. Smoliński, A., Bondaruk, J., Pichlak, M., Trząski, L., & Uszok, E. (2015). Science-economy-technology concordance matrix for development and implementation of regional smart specializations in the Silesian Voivodeship, Poland. The Scientific World Journal, 2015, Article ID 126760.

  16. Wojnicka-Sycz, E., Sliż, P. & Sycz, P. (2018), Monitoring inteligentnych specjalizacji w województwie pomorskim (ISP) w 2018 – propozycja modyfikacji w zakresie wskaźników specyficznych. Opracowanie dla Urzędu Marszałkowskiego Województwa Pomorskiego Gdańsk.

bottom of page